Микрофлора человека

Микрофлора человека

Микрофлора — совокупность разных типов микроорганизмов, населяющих какую-либо среду обитания. 

Человеческий организм – это «ансамбль», состоящий из отдельных органов и систем, симбиоз которого заключается в слаженной работе всех участников данного тандема.

При этом каждый орган имеет свою рН среду или микрофлору, и чувствует себя комфортно именно в ней. Так например, ротовая полость имеет щелочную среду, желудок – кислотную, кишечник – щелочную и т. д. Различают микрофлору кожи, кишечника, влагалища, жёлчных путей и других органов.

Нарушение определённого баланса среды какого-либо органа, или системы, приводит сначала к его некорректной работе, а далее, к заболеваниям.

По происхождению микрофлора делится на:

  • автохтонную, постоянно присутствующую в среде обитания;
  • аллохтонную (привнесённую).

Организм человека в норме содержит сотни видов микроорганизмов: среди них доминируют бактерии. Вирусы и простейшие представлены значительно меньшим числом видов. Подавляющее большинство таких микроорганизмов — сапрофиты-комменсалы, но как в любом биоценозе взаимоотношения в системе микроорганизм — макроорганизм могут носить как симбиотический, так и паразитический характер. Видовой состав микробного биоценоза различных отделов организма периодически меняется, но каждый индивидуум имеет более или менее характерные микробные сообщества. 

Основные условия выживания вида (включая микроорганизмы) — нормальная жизнедеятельность, быстрое воспроизведение плодовитого потомства, колонизирующего определённый ареал обитания.

ОСНОВНЫЕ ФУНКЦИИ МИКРОФЛОРЫ

Оказывает морфокинетическое действие

Микрофлора стимулирует рост пролиферативных эпителиальных клеток. Способствует развитию слизистой оболочки и клеток продуцирующих муцин, а так же развитию ворсинок желудочно–кишечного тракта. Присутствие в желудочно–кишечном тракте микроорганизмов стимулирует перистальтику тонкого и толстого кишечника, опорожнение желудка, сокращает транзитное время для пищи, участвует в моторной функции кишечника.

Участвует в регуляции газового состава полостей

В результате жизнедеятельности микроорганизмов в кишечнике человека образуются различные газообразные продукты (водород, метан, аммиак, углекислый газ, сероводород и др.), которые участвуют в стимуляции перистальтики кишечника.

Участвует в водно–солевом обмене, поддержании рН и регуляции анаэробиоза

Микрофлора желудочно–кишечного тракта оказывает существенное влияние на водно-солевой обмен хозяина, участвуя в процессах всасывания воды, электролитов и других неорганических соединений из кишечного содержимого, а также в секреции тех же компонентов в просвет кишечника. Микроорганизмы, присутствующие в кишечнике, активно участвуют в поддержании рН содержимого толстого кишечника на уровне 7,2–7,4. Это достигается за счет продукции анаэробными микроорганизмами летучих жирных кислот и регуляции содержания в просвете бикарбоната.

Участвует в метаболизме углеводов, белков, липидов и других соединений

Огромное число разнообразных микроорганизмов, постоянно или транзиторно присутствующих на коже и слизистых, принимает активное участие в метаболизации разнообразных субстратов растительного, животного и микробного происхождения, поступающих в организм хозяина извне или образующихся эндогенно. Даже при голодании микроорганизмы, присутствующие в пищеварительном тракте, обеспечиваются пищевыми субстратами за счет слущеных эпителиальных клеток и пищеварительных соков.

Участвует в рециркуляции желчных кислот, стероидов и других макромолекул

Первичные желчные кислоты (С24) синтезируются в печени из холестерина (С27) и секретируются в желчь в виде конъюгата с глицином и таурином. Свободные желчные кислоты сорбируются в терминальном отделе тонкого и в толстом кишечнике за счет активного или пассивного транспорта и через систему портальной вены возвращаются в печень, где вновь формируются комплексы, возвращающиеся в желчь.

Желчные кислоты, обнаруживаемые в кишечнике, находятся в свободном состоянии. Так как в фекалиях безмикробных животных отсутствуют вторичные желчные кислоты, то предполагается, что их образование связано с жизнедеятельностью кишечных бактерий. В настоящее время накоплены многочисленные данные, свидетельствующие о том, что кишечная микрофлора человека и других животных способна осуществлять биотрансформацию желчных кислот, холестерина, стероидных гормонов (эстрогены и андрогены) в различные метаболиты в процессе кишечно-печеночной рециркуляции этих липидов. Холестерин подвергается метаболизации кишечными бактериями с образованием копростанона, копростанола и небольших количеств холестенона.

Эстрогены (эстрон, эстрадиол, эстриол), кортикостероиды, прогестероны, андростаны экскретируются из печени в желчь в виде конъюгатов с глюкуроновой кислотой или сульфатом. В толстом кишечнике они подвергаются гидролизу с высвобождением свободных гормонов. В дальнейшем в условиях анаэробиоза кишечные бактерии могут подвергать свободные эстрогены различным трансформациям. В результате эстрон может превращаться в эстрадиол. Фекальная микрофлора способна также модифицировать молекулу 16 а- гидроксиэстрона с образованием эстриола.

В процессе биотрансформации холестеролсодержащих липидов могут принимать участие клостридии, энтерококки, бактероиды различных видов, а также другие кишечные микроорганизмы. Доказано, что многие виды лактобацилл являются активными продуцентами гидролитических ферментов, осуществляющих деконъюгацию комплексов желчных кислот.

Кишечно–печеночной циркуляции подвергаются также различные лекарственные препараты и другие ксенобиотики. В них могут вовлекаться и такие субстраты как фолиевая кислота, витамин В12, протопорфирин, метаболиты витамина D и другие эндогенно образующиеся вещества.

Участвует в продукции биологически активных соединений

Микроорганизмы, населяющие кожу и слизистые, прежде всего присутствующие в желудочно-кишечном тракте, не только участвуют в обеспечении организма хозяина необходимыми для удовлетворения энергетических и пластических потребностей соединениями, но и продуцируют значительное количество разнообразных физиологически активных субстанций, различных гормоноподобных соединений, медиаторов, контролирующих пищеварительные и эндокринные функции, обмен веществ в целом.

Летучие жирные кислоты (ЛЖК) являются одним из главных промежуточных и конечных продуктов микробной ферментации углеводов, жиров и белков. Так, в результате анаэробного брожения углеводов, образуются уксусная, пропионовая и масляная кислоты; метаболизация белков кишечными бактериями ведет к образованию масляной (из валина) и изовалерьяновой (из лейцина) кислот.

Кроме этого летучие жирные кислоты (ЛЖК) принимают участие в регуляции абсорбции ионов натрия, калия, хлора и воды, контролируют содержание просветного бикарбоната и уровень рН. Регулируют также абсорбцию кальция, натрия и цинка. Таким образом, ЛЖК следует рассматривать как один из главных механизмов хозяина, поддерживающих его водный, электролитный и кислотно–щелочной балансы. Они являются также важнейшими регуляторами углеводного и, возможно, липидного метаболизма в печени и других тканях.

Витамины. Известно, что витамины требуются клеткам животных, растений и микроорганизмов как ко-факторы в различных метаболических реакциях. Исследования на безмикробных и конвенциональных животных продемонстрировали, что присутствующие в организме хозяина микроорганизмы способны синтезировать значительные количества разнообразных витаминов, при этом часто в количествах, которых достаточно не только для обеспечения их собственных потребностей, но и для обеспечения нужд хозяина.

Тиамин синтезируется кишечной микрофлорой, кроме того на общий уровень витамина В1 в содержимом слепой кишки влияет не только диета, наличие или отсутствие микрофлоры в организме хозяина, но и копрофагия. Кишечные бактерии, прежде всего те, что локализованы в нижних отделах подвздошной кишки, синтезируют гомологи витамина К.

Витамин В12 (цианокобаламин) синтезируется только микроорганизмами. При этом наиболее интенсивно этот процесс идет в анаэробных условиях. Этот витамин, образуемый микрофлорой различных животных, сорбируясь из тонкого кишечника, проникает в мясо и молоко. Человек в значительной степени удовлетворяет свои потребности в этом витамине, используя в питании продукты животного происхождения. Микрофлора человека также способна синтезировать данный витамин.

Бактериальные липополисахариды (ЛПС)

Грамотрицательные бактерии, содержат в своей клеточной стенке трехкомпонентную структуру, называемую бактериальным липополисахаридом. ЛПС высвобождается из бактериальных клеток при их гибели в результате аутолиза под действием различных токсинов и антибиотиков. Из ЖКТ ЛПС могут проникать в ткани и органы через портальную вену или через кишечную лимфатическую систему. Это приводит к различным изменениям в организме: снижает количество употребляемой пищи, активность липопротеинлипаз в мышцах и костях, содержание липопротеинов в плазме крови, синтез жирных кислот печени, увеличивает в крови уровень ненасыщенных жирных кислот и триглицеридов, нарушает баланс клеточного гликогена.

ЛПС вызывают клинические проявления токсикоза, сопровождающегося слабостью, одышкой, нарушением сердечной деятельности. Низкие концентрации ЛПС стимулируют фагоцитоз, вызывают агрегацию тромбоцитов, повышают температуру тела и липосидеремию. Они вызывают неспецифическую пролиферацию Т и В клеток, активируют макрофаги, усиливают иммунный ответ, повышают противоопухолевую резистентность, естественную устойчивость к инфекциям и аутоиммунные реакции.

Накопление ЛПС в организме человека может способствовать развитию септического шока, к появлению заболеваний печени и воспалительных поражений кишечника, острой почечной недостаточности, гломерулонефритам, нарушению дыхания у взрослых, появлению некротического энтероколита и синдрому отторжения трансплантанта.

Пептидогликаны и другие продукты, образуемые грамположительными бактериями способны активно участвовать в регуляции иммунного статуса хозяина, вмешиваться в функции иммунокомпетентных клеток и органов. Пептидогликаны способны оказывать адьювантный и митагенный эффекты, активировать комплемент, индуцировать выработку специфических антител. Экзотоксины микробов оказывают токсическое действие на ткани и органы человека, обладают фосфолипазной, коагулазной, гиалуронидазной, липазной, дезоксирибонуклеазной активностями, что может привести к повреждению мембран различных клеток и тканей организма человека.

Амины и другие биологически активные соединения выделяемые энтеробактериями, энтерококками, лактобактериями, анаэробами, оказывают разнообразный эффект на организм человека и животных, принимают участие в патологических процессах в кишечнике, печени и мочевом пузыре.

Многие представители организма человека образуют в процессе своей жизнедеятельности разнообразные химические соединения, проявляющие антимикробную активность. Энтеробактерии и лактобактерии вырабатывают бактериоцины, которые блокируют синтез макромолекул чувствительных к ним клеток и оказывают антимикробный эффект, подавляя метаболизм клеток. Они способствуют прекращению роста и размножения клеток, подавляют синтез РНК, ДНК, белка и различных адаптивных ферментов клеток.

Лактобактерии выделяют различные бактериоцины, низин, диплоцин, лактострепцин, гельветицин, лактобревин, булгарицин, лактоцины, плантарицин и педиоцин. Поэтому они могут проявлять широкий спектр антимикробной активности, ингибируя рост и размножение бацилл, клостридий, стрептококков, стафилококков, энтеробактерий, псевдомонад, листерий и грибов рода кандида. Ацидофильные лактобактерии ингибируют рост кампилобактерий и холерных вибрионов.

Бифидобактерии выделяют бифидин, бифилонг, которые проявляют антимикробную активность в отношении энтеробактерий, вибрионов, стрептококков и стафилококков. Продукция бактериоциноподобных соединений выявлена у многих зеленящих стрептококков, обитающих на слизистых верхних дыхательных путей. Они, в основном, подавляют рост различных видов бактероидов. Бациллы, обитающие в кишечнике, выделяют полимиксины, колистин, бацитрацин, грамицидин, субтилин, бутирозин, которые активны преимущественно против грамположительных бактерий. Однако, полимиксин и колистин эффективны только против грамотрицательных бактерий. Пептострептококки выделяют антимикробные субстанции, подавляющие рост многих грамположительных бактерий, включая клостридии.

Антимикробный эффект многих микроорганизмов связан с их способностью синтезировать различные органические кислоты: муравьиную, уксусную, молочную и пропионовую, что приводит к снижению рН среды и подавляет рост грамположительных и грамотрицательных бактерий.

Некоторые молочнокислые бактерии выделяют в процессе своей жизнедеятельности перекись водорода, которая может приводить к гибели вирусов в организме человека. Представители нормальной микрофлоры: лактобациллы, энтерококки и другие микроорганизмы выделяют лизоцим, который расщепляет пептидогликан грамположительных бактерий.

Играет иммуногенную роль

Реакция организма хозяина на многочисленные микроорганизмы, обитающие на коже и слизистых это важный компонент иммунологического гомеостаза. Нормальная микрофлора играет важную роль в формировании иммунокомпетентных органов и тканей организма. Бактерии, ассоциируясь с микозным слоем кишечного тракта, активируют местные и системные иммунокомпетентные ткани, усиливают макрофагальную активность организма.

Назначение больным детям с заболеваниями ЖКТ препаратов на основе лактобактерий сокращает период выздоровления, усиливает неспецифический гуморальный ответ, вызывает возрастание количества всех классов иммуноглобулинов и, особенно, секреторного иммуноглобулина А. Иммуностимулирующее действие оказывает пропионибактерии, эубактерии, дрожжи и бифидобактерии. Назначение живых бифидо- и лактобактерий способствует уменьшению воспалительных процессов в ЖКТ, а так же увеличивают устойчивость к введению энтеропатогенных кишечных палочек, повышают резистентность к действию эндотоксина, стимулируют антительный и клеточный иммунный ответы, вызывают повышение количества лимфоцитов в лимфоцитарных органах и повышают неспецифическую антибактериальную защиту организма. Пропионибактерии активируют макрофаги, увеличивают адгезивные свойства фагоцитов, повышают активность лизосомальных ферментов, оказывают иммуномодулирующий эффект за счет синтеза интерферона и неоптерина.

Обеспечивает колонизационную резистентность и предотвращает транслокацию

Нормальная микрофлора обеспечивает колонизационную резистентность организма человека. Под колонизационной резистентностью понимают совокупность механизмов, придающих индивидуальную стабильность нормальной микрофлоры и обеспечивающих предотвращение заселения организма человека посторонними микроорганизмами и распространение представителей нормальной микрофлоры на поверхности кожи, слизистых в их естественных местах обитания. При снижении колонизационной резистентности на коже и слизистых организма человека появляются патогенные микроорганизмы, которые могут проникать во внутренние органы и ткани и приводить к развитию гнойно-воспалительных процессов и септицемии.

Оппортунистические инфекции в организме человека являются следствием снижения колонизационной резистентности в желудочно-кишечном тракте. К ее снижению могут приводить использование антибиотиков, лекарственных и противоопухолевых препаратов, которые вызывают микроэкологические нарушения в организме человека за счет гибели микроорганизмов, резкого изменения рН и окислительно–восстановительного потенциала клеток. К факторам, способствующим снижению колонизационной резистентности, можно отнести стрессовые ситуации, связанные с космическими полетами, изменением географии места жительства, переходом на иной пищевой рацион, голоданием, операционными вмешательствами, бактериальными и вирусными инфекциями, первичными и вторичными иммунодефицитами и механическими повреждениями биопленки при различных медицинских манипуляциях.

Антагонизм микроорганизмов, составляющих нормальную микрофлору, в отношении патогенных бактерий, обусловлен продукцией бактериоцинов, лизоцима, пептидов, различных органических кислот и т.д. Перекись водорода и сероводород, образующийся при метаболизме микроорганизмов, угнетают рост и размножение бактерий и нарушают процесс их фиксации и прикрепления к тканям организма человека.

Численность и состав бактериальных популяций на слизистых контролируется также конкуренцией за питательные субстраты. Отличие в составе микрофлоры в различных участках организма определяется количеством муцина, образуемого бокаловидными клетками. Микробы, имеющие ферменты муциназы, легко и быстро утилизируют муцины, что способствует их прикреплению к слизистым оболочкам.

Многие патогенные и потенциально патогенные микроорганизмы выделяют токсины и другие факторы агрессии и защиты, ингибирующие специфические и неспецифические механизмы защиты хозяина, а также рост индигенных микроорганизмов. Установлено, что детоксикация этих субстанций или ингибирование их образования представителями нормальной микрофлоры предотвращает колонизацию слизистых определенными группами патогенных бактерий.

К факторам колонизационной резистентности можно отнести продукцию бактериями различных неспецифических стимуляторов иммуногенеза и активаторов фагоцитарной и ферментативной активности.

Участвуют в детоксикации экзогенных и эндогенных субстратов и метаболитов; оказывают антимутагенную активность

Химические соединения, чужеродные для биологических систем, рассматривают как ксенобиотики. Проникая в организм человека, многие из них потенциально могут индуцировать различные побочные эффекты и, в первую очередь, вызывать дисбаланс микрофлоры кожи и слизистых с возникновением разнообразных, порой непредсказуемых негативных последствий.

Процесс детоксикации с участием нормальной микрофлоры идет по нескольким направлениям: биотрансформация с образованием нетоксических конечных продуктов, микробная трансформация, сопровождающаяся образованием метаболитов, подвергающихся быстрой деструкции в печени, изменение полярности соединений таким образом, что изменяется скорость их экскреции в окружающую среду или транслокации из крови в просвет кишечника и мочевыделительную систему.

Выступая в качестве «естественного биосорбента», нормальная микрофлора способна также аккумулировать в значительном количестве попадающие извне или образующиеся в организме хозяина разнообразные по химическому составу потенциальные токсические продукты. Доказана и антимутагенная роль нормальной микрофлоры. При этом следует иметь в виду, что анаэробные бактерии разрушают более широкий спектр токсических веществ, а сами процессы детоксикации идут с большей эффективностью по сравнению с аэробными микроорганизмами.

Нормальную микрофлору организма следует рассматривать как первичную мишень приложения любого попадающего обычным путем соединения, как метаболический орган, первым вовлекаемый в трансформацию естественных и чужеродных субстанций, как структуру, на которой проходит первичная абсорбция и через которую транслоцируются полезные и потенциально вредные агенты.

Нормальная микрофлора – это своеобразная биологическая система, регулирующая взаимоотношения организма с окружающей средой, это тот неспецифический барьер, лишь после прорыва, которого инициируется включение неспецифических, а в последующем и специфических механизмов защиты.

Наиболее показательным примером детоксикационной деятельности микрофлоры человека является специфическая и неспецифическая инактивация антибиотиков и других химиопрепаратов различными представителями кишечных микроорганизмов. Благодаря наличию этих ферментов, многие грамотрицательные и грамположительные бактерии способны противостоять чрезвычайно высоким концентрациям этих антибиотиков.

Анаэробные бактерии, в том числе выделенные из кишечника, способны декарбоксилировать фенилуксусную кислоту и другие ароматические веществ, попадающие в окружающую среду, а затем в организм человека при производстве различных альдегидов, синтетических отдушек. Благодаря наличию разнообразных гликозидаз, кишечные бактерии способны метаболизировать различные токсические соединения, а иногда и лекарственные препараты (например, сердечный гликозид дигоксин). Метанотрофные микроорганизмы способны утилизировать различные токсические соединения (метан, цианиды, метанол, формальдегиды, фенолы, крезолы) в углекислый газ и воду.

Бактерии способны взаимодействовать и связывать значительные количества ионов металлов из водных растворов. Кишечная микрофлора участвует в метаболизации потенциально токсичных соединений (азокрасителей, солей тяжелых металлов, различных мутагенов, нитратов, других ксенобиотиков, включая сульфосодержащие соединения, а также эндогенно образующихся желчных кислот, стероидных гормонов и т.д.).

Установлено, что бактерии и простейшие, присутствующие в пищеварительном тракте, способны активно детоксицировать афлотоксины, различные токсины растительного происхождения.

Является хранилищем микробных плазмидных и хромосомных генов

Многочисленные бактерии, вирусы и простейшие, присутствующие на коже и слизистых, являются уникальным для каждого человека хранилищем разнообразных хромосомальных плазмидных генов.

На моделях энтеробактерий, молочнокислых бактерий, бактероидов и других микроорганизмов продемонстрировано, что высокая адаптационная способность микробных популяций обусловлена не только мутационными процессами в хромосомных генах и последующей селекцией возникших генетических вариантов, но также за счет рекомбинационных событий, связанных с плазмидами, транспозонами и умеренными бактериофагами. Благодаря этому, способность микроорганизмов приспосабливаться к постоянно меняющимся условиям жизни многократно увеличивается.

Возможно, в бактериальных клетках переход генов из хромосомного в плазмидное состояние происходит с частотой близкой к частоте спонтанных мутаций. Это означает, что в достаточно большой по количеству клеток бактериальной популяции практически любой ген или группа находятся в плазмидном состоянии. В плазмидном состоянии генетический материал с большей легкостью может передаваться в другие клетки при трансформации, трансдукции или коньюгации.

Наличие транспозонов в хромосоме или плазмидах позволяет генетическому материалу переноситься не только в близкородственные микроорганизмы, но и в отдаленные таксоны. Продукция микроорганизмами соответствующих бактериофагов способствует переносу и закреплению практически любых генов в хромосоме бактерий и контролю численности последних.

Огромный пул генетического материала, сосредоточенный в хромосомных и плазмидных генах многочисленных микробных клеток, присутствующих на коже и слизистых, их иммобилизованное состояние и высокая скорость размножения, выраженная изменчивость за счет мутационных рекомбинационных процессов и обратимого перехода генов в хромосомное/плазмидное состояние – все это обуславливает колоссальные адаптационные возможности микрофлоры хозяина. Установленная способность бактерий перемещаться как по ходу движения мукоцелиарного эпителия, так и против него способствует распространению микробных генов практически по всей биопленке вне зависимости от места ее расположения. Более того, дрейф генов, постоянно идущий внутри многочисленных микробных популяций, локализованных в определенных экологических нишах (пищеварительный тракт, кожа, дыхательные пути, гениталии), позволяет нам утверждать о существовании в этих областях единого генетического материала. Если учесть высокую вероятность миграции микроорганизмов из одной экологической ниши в другую, то можно поднимать вопрос о наличии в организме хозяина единого своеобразного по составу и сложности микробного генома.

Участвует в этиопатогенезе гнойно–воспалительных и других заболеваний

Говоря о значении микрофлоры для организма хозяина, следует иметь в виду, что ее представители, также как и продукты их метаболизма, способны выступать как фактор агрессии. Так, в случае создания условий, способствующих усиленному размножению микроорганизмов в пищеварительном тракте, того или иного дефекта в иммунных механизмах защиты или повышенной проницаемости барьера слизистых, кишечные транзиторные и, в меньшей степени, индигенные бактерии транслоцируются из места своего обитания в кровеносное и лимфатическое русло и, достигнув места наименьшего сопротивления, могут явиться источником разнообразных гнойно-воспалительных процессов. Именно этот механизм, как полагают, преимущественно лежит в основе все увеличивающегося числа внутрибольничных инфекций.

В случае снижения колонизационной резистентности попадающие извне потенциально патогенные микроорганизмы вместо элиминации из организма фиксируются к соответствующим рецепторам, продуцируют токсические вещества и, как следствие этого, развивается патологический процесс.

Токсины и ферменты, образующиеся при дисбалансе нормальной микрофлоры, так же как и избыточный или недостаточный синтез микробных метаболитов, могут оказывать разнообразные, в том числе неблагоприятные для макроорганизма эффекты, которые не проявляются в условиях сбалансированного функционирования экологической системы организм хозяина – его микрофлора.

Следует так же иметь в виду, что в процессе микробной трансформации в организме человека и животных могут формироваться продукты с большим биологическим эффектом, чем исходные соединения. Например, под влиянием гликозидаз, продуцируемых нормальной микрофлорой кишечника, из цеказина образуются соединения с выраженным канцерогенным действием, из амигдалина высвобождаются цианиды, из пектина образуется метанол и т. д.

ОСНОВНЫЕ МИКРОБНЫЕ БИОТОПЫ МИКРОФЛОРЫ ЧЕЛОВЕКА

Основные отделы организма человека, заселяемые бактериями: кожные покровы, воздухоносные пути, желудочно-кишечный тракт, мочеполовая система.

Соответственно из вышесказанного можно выделить:

В указанных областях бактерии живут и размножаются; а их содержание варьирует в зависимости от условий существования.



Comments are closed.